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Received 7 January 2008, in final form 13 March 2008
Published 17 April 2008
Online at stacks.iop.org/JPhysCM/20/205104

Abstract
The self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics is
employed to describe the ergodic–non-ergodic transition in model mono-disperse colloidal
dispersions whose particles interact through hard-sphere plus short-ranged attractive forces. The
ergodic–non-ergodic phase diagram in the temperature–concentration state space is determined
for the hard-sphere plus attractive Yukawa model within the mean spherical approximation for
the static structure factor by solving a remarkably simple equation for the localization length of
the colloidal particles. Finite real values of this property signals non-ergodicity and determines
the non-ergodic parameters f (k) and fs(k). The resulting phase diagram for this system, which
involves the existence of reentrant (repulsive and attractive) glass states, is compared with the
corresponding prediction of mode coupling theory. Although both theories coincide in the
general features of this phase diagram, there are also clear qualitative differences. One of the
most relevant is the SCGLE prediction that the ergodic–attractive glass transition does not
preempt the gas–liquid phase transition, but always intersects the corresponding spinodal curve
on its high-concentration side. We also calculate the ergodic–non-ergodic phase diagram for the
sticky hard-sphere model to illustrate the dependence of the predicted SCGLE dynamic phase
diagram on the choice of one important constituent element of the SCGLE theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The fundamental understanding of dynamically arrested states
is a major challenge of contemporary statistical physics
and materials science [1–3]. Model experimental colloidal
suspensions, whose static and dynamic properties have been
the subject of attention in their own right [4–6], have
played an essential role in the study of dynamic arrest
phenomena, providing experimental realizations in finely
controlled systems and conditions [7, 8]. First-principles
models and theories that predict and describe these transitions
constitute an essential aspect of the fundamental understanding
of these phenomena. The mode coupling theory (MCT) of the
ideal glass transition [3, 9] is perhaps the most comprehensive
theory of this sort, some of whose predictions have found

beautiful experimental confirmation. This is illustrated, for
example, by the MCT predictions of the existence and
properties of the glass transition in hard-sphere systems [10, 7],
and of the existence of a second kind of glass state, referred
to as attractive glasses [11–13], that appears when the effects
of the short-ranged attractive interactions compete with the
effects of hard-sphere forces. The experimental observation
of this richer glass transition scenario has been reported in
systems in which the attractive interactions originate from
some form of solvophobic effect [14–16] or as the result of
depletion forces [17–20]. Thus, it is now clear that the effects
of attractive forces is to widen the ergodic region in the phase
diagram and to introduce a reentrant glass transition at high
volume fractions, and low-density arrested states at low volume
fractions.
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Although there is a remarkable consistency between
the predicted MCT general scenario and these experimental
observations, the understanding of the detailed nature of
these new glass states and the general topology of the
ergodic–non-ergodic phase diagram, cannot be considered
settled questions. Recent computer simulation work, for
example, suggests that the glass transition line intersects
the spinodal curve on the high-concentration side, never
lying above the critical point [21]. This result could have
very important implications in the understanding of the
gel-transition mechanism. Similarly, it has recently been
suggested [22] that the two-component extension of MCT
fails to predict the reentrant behavior that its one-component
version does predict, when applied to the conditions for which
the glass–liquid–glass reentrance is observed in systems with
depletion forces. Questions of this sort seem to be pushing the
predictive capability of MCT to its limit, and have prompted
the proposal of extended versions of this theory [23–25], or the
development of alternative approaches [26]. The main aim of
this paper is to apply a recently developed theory of dynamic
arrest in colloidal dispersions [27–29] to the description of the
glass transition in model systems with attractive interactions.
In this paper we report the scenario that emerges when the
mono-component version of this theory is applied to a generic
system with hard-sphere plus attractive Yukawa interactions,
regardless of the physical origin of these attractive forces.
One important objective of this work is also to contrast the
scenario predicted by the present theory with that predicted by
conventional MCT [11].

The theory we refer to is essentially the application of the
self-consistent generalized Langevin equation (SCGLE) theory
of colloid dynamics [30–33] to the analysis of dynamic arrest
phenomena in specific colloidal systems and conditions. The
SCGLE theory was originally devised to describe the tracer
and collective diffusion properties of colloidal dispersions
in the short- and intermediate-time regimes. As explained
in [28], its self-consistent character introduces a nonlinear
dynamic feedback, leading to the prediction of dynamic arrest
in these systems, similar to that exhibited by the mode
coupling (MC) theory of the ideal glass transition. The
application of this theory was illustrated with the comparison
of its predictions regarding the glass transition in two mono-
disperse experimental systems with specific (hard-sphere and
screened electrostatic) inter-particle effective forces [28]. For
these systems the SCGLE theory was found to have similar
quantitative predictive power as conventional MCT, but with a
lower degree of difficulty in its application [29]. Some aspects
of the application of the SCGLE theory to systems with short-
ranged attractive interactions were briefly reported in a recent
short communication [27], and the present paper contains a
more systematic discussion on this subject.

We start in the following section by reviewing the basics
of the SCGLE theory of dynamic arrest. In section 3 we
describe the resulting dynamic arrest phase diagram of the
hard-sphere plus attractive Yukawa model. In section 4 we
briefly present the main features of the corresponding non-
ergodic parameters of the HSAY system. Since these properties
derive rather directly from the static structure factors employed

as input of the dynamic theory, in section 5 we discuss the main
features of these static inputs, provided by the semi-analytic
solution of the mean spherical approximation. In section 6 we
discuss the possible contact of our theoretical results with the
available experimental measurements. In section 7 we present
the dynamic arrest phase diagram of a simple toy model,
namely, the sticky hard-sphere model, with the intention of
comparing the different dynamic arrest scenarios predicted by
our theory and by MCT, and with the intention of analyzing the
dependence of the SCGLE results on one fundamental element
of this theory. Section 8 summarizes the main results and gives
the conclusions of this paper.

2. Brief review of the SCGLE theory

The dynamic properties of colloidal dispersions can be
described in terms of the relaxation of the fluctuations
δn(r, t) of the local concentration n(r, t) of colloidal particles
around the bulk equilibrium value n. The average decay
of δn(r, t) is described by the time-dependent correlation
function F(k, t) ≡ 〈δn(k, t)δn(−k, 0)〉 of the Fourier
transform δn(k, t) ≡ (1/N)

∑N
i=1 exp [ik · ri (t)] of the

fluctuations δn(r, t), with ri (t) being the position of particle
i at time t . F(k, t) is referred to as the intermediate
scattering function, measured by experimental techniques such
as dynamic light scattering. One can also define the self -
component of F(k, t), referred to as the self-intermediate
scattering function, as FS(k, t) ≡ 〈exp [ik · �R(t)]〉, where
�R(t) is the displacement of any of the N particles over a time
t . The self-consistent generalized Langevin equation theory of
colloid dynamics [30–33] leads to the calculation of F(k, t)
and FS(k, t), given the effective interaction pair potential u(r)

between colloidal particles and the corresponding equilibrium
static structure, represented by the static structure factor S(k).

This theory is based on general and exact expressions
for F(k, t) and FS(k, t) in terms of a hierarchy of memory
functions complemented by a number of physically or
intuitively motivated approximations [30]. The first and most
important of such elements consists of general and exact
memory function expressions for F(k, t) and FS(k, t) [30],
which in Laplace space read

F(k, z) = S(k)

z + k2 D0 S−1(k)

1+C(k,z)

, (1)

FS(k, z) = 1

z + k2 D0
1+CS(k,z)

, (2)

where D0 is the free-diffusion coefficient, S(k) is the static
structure factor of the system, and C(k, z) and CS(k, z)
are the Laplace transform (LT) of the so-called irreducible
memory functions C(k, t) and CS(k, t) [34]4. These exact
results can be derived in a variety of manners, and our
derivation [30] was framed within the generalized Langevin
equation (GLE) formalism and the process of contraction of
the description [36, 37].

4 In reality, Nägele et al [34] refer to [C(k, z)D0] as the ‘irreducible memory
function’, a concept first introduced by Cichocki and Hess [35].
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The second ingredient of the SCGLE theory is the intuitive
notion that collective and self-dynamics may be connected in
a simple manner. Vineyard’s approximation [38], in which the
collective propagator �(k, t) ≡ F(k, t)/S(k) is approximated
by the ‘self’-propagator �(s)(k, t) ≡ F (s)(k, t), is the most
primitive (or ‘zeroth order’) implementation of this idea.
Equations (1) and (2) suggest, however, that other connections
between self-and collective dynamics may be proposed at
the level of the memory functions C(k, z) and CS(k, z), the
simplest of them being to approximate one by the other,
namely,

C(k, t) = CS(k, t). (3)

This is referred to as the first-order Vineyard approximation,
and is the approximation that we shall incorporate in the
SCGLE theory of dynamic arrest introduced in the present
work. In spite of its apparent simplicity (or, in fact, because
of its simplicity), this turns out to be the formal connection
between collective and self-dynamics that best serves the
purpose of describing the long-time slow dynamics of systems
near their dynamic arrest transitions. It is the best not only
because it is the simplest, but also because it turns out to
be equally accurate, for the purposes given above, as other
more sophisticated higher-order Vineyard approximations. For
example, given that the SCGLE theory was originally aimed
at describing short- and intermediate-time properties, the
difference [C(k, t) − CS(k, t)] was approximated by the
difference of the exact short-time/large-k limit CSEXP(k, t)
and CSEXP

S (k, t) of these memory functions, for which well-
established expressions are available in terms of equilibrium
structural properties [6, 39, 28]. As was discussed more
recently [29], however, an equally accurate approximation is to
simply neglect this difference, and to relate the two irreducible
memory functions by the simpler relation in equation (3).

The third ingredient consists of the independent approxi-
mate determination of FS(k, t) [or CS(k, t)]. One intuitively
expects that these k-dependent self-diffusion properties should
be simply related to the properties that describe the Brownian
motion of individual particles, just like in the Gaussian approx-
imation [4], which expresses FS(k, t) in terms of the mean-
squared displacement W (t) as FS(k, t) = exp[−k2W (t)].
We introduce an analogous approximate connection, but at
the level of their respective memory functions. The mem-
ory function of W (t) is the so-called time-dependent fric-
tion function �ζ(t). This function, normalized by the sol-
vent friction ζ0 = (β D0)

−1, is the long wavelength limit
of CS(k, t), i.e. limk→0 CS(k, t) = �ζ ∗(t) ≡ �ζ(t)/ζ0.
Thus, we interpolate CS(k, t) between its two exact limits,
CS(k, t) = CSEXP

S (k, t) + [�ζ ∗(t) − CSEXP
S (k, t)]λ(k), with

λ(k) being a phenomenological interpolating function such
that λ(k → 0) = 1 and λ(k → ∞) = 0. In the absence
of rigorous fundamental guidelines to construct this interpolat-
ing function, we require λ(k) to represent the optimum mixing
of these two limits of CS(k, t) in the simplest possible analyt-
ical manner. Guided by these practical considerations, in [30]
the proposal was made to model λ(k) by the functional form
λ(k) ≡ [1 + (k/kc)

ν]−1, in which the parameter ν indicates
how abruptly the memory function CS(k, t) crosses over from

its small-k to its large-k value, and the parameter kc indicates
at which wavevector this crossover will occur.

The parameters ν and kc could, of course, be treated
simply as adjustable parameters, determined every time by
the comparison with specific experimental or simulated data.
This, however, is not what the SCGLE theory advocates.
The proposal in [30] involved, instead, a less empirical
strategy, based on the expectation that these parameters could
be determined in a more general and universal manner,
independent of the details of the specific system. Hopefully,
such a universal protocol could be revealed by its application
to an arbitrary (experimental or simulated) system. With this
expectation in mind, in [30] theoretical predictions of the
collective dynamics of a specific system (a two-dimensional
repulsive Yukawa Brownian fluid) were calculated using a
variety of values of ν and kc. These results were then compared
with (‘exact’) Brownian dynamics simulations for F(k, t) for
a fixed state. In this manner it was discovered that the optimum
choice of these parameters was ν = 2 and kc = kmin, with kmin

being the position of the first minimum that follows the main
peak of the static structure factor S(k). The expectation is, of
course, that this choice is equally useful under more general
conditions, including, of course, other states of the same
system and other (simulated or experimental) systems. In [31]
this expectation was reasonably confirmed for simulated mono-
disperse systems, and in [33] for model colloidal mixtures.
The same definition of these parameters was also successfully
employed in the comparison in [28] of the predictions of
the present theory with the experimental data for the non-
ergodicity parameters in dispersions of highly charged particles
and of hard-sphere particles at high concentrations (the latter
involving strong hydrodynamic interactions). Although one
could imagine possible refinements to this protocol, in this
work we maintain this definition of λ(k). Furthermore, we
adopt a simplified version of the interpolation formula above,
due to the fact that the present work deals with the long-time
slow relaxation processes near the dynamic arrest transition,
for which the short-time details described by the short-time
memory function CSEXP

S (k, t) are not expected to be relevant.
Thus, the interpolating formula above simplifies to

CS(k, t) = [
�ζ ∗(t)

]
λ(k), (4)

which we incorporate in the present self-consistent theory.
The fourth ingredient of our theory is another exact result,

this time for �ζ ∗(t). In [36] the effective Langevin equation
of a tracer colloidal particle interacting with the other particles
of a mono-disperse suspension was derived, using the concept
of contraction of the description [37] (a summary of such
derivation is contained in appendix B of [28]). Besides
the solvent friction force, −ζ 0V(t), the direct interactions
of the tracer particle with the other particles give rise to an
additional friction term of the form − ∫ t

0 dt ′�ζ(t − t ′)V(t ′),
where V(t) is the tracer particle’s velocity at time t . In
the process, an exact result for the time-dependent friction
function �ζ ∗(t) ≡ �ζ(t)/ζ 0 is generated. This exact result
may, upon the introduction of two well-defined simplifying
approximation (referred to as the ‘homogeneous fluid’ and
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the ‘decoupling’ approximations [36]), be converted into the
following approximate but general expression

�ζ ∗(t) = D0

3 (2π)3 n

∫

dk
[

k[S(k) − 1]
S(k)

]2

F(k, t)FS(k, t).

(5)
The incorporation of this result finally leads to a closed system
of equations.

Thus, equations (1)–(5) constitute the SCGLE theory of
colloid dynamics. Besides the unknown dynamic properties, it
only involves the static structural property S(k), determined
by the methods of equilibrium statistical thermodynamics,
and the interpolating function λ(k), which also depends on
S(k). Notice that the resulting self-consistent scheme is free
from any form of adjustable parameters. Let us also mention
that equations (1) and (2) are exact results, and equation (5)
derives from another exact result. Hence, it should not
be a surprise that the same results are employed by other
theories; in fact, the same equations are employed in MCT.
The difference lies, of course, in the way we relate them and
use them. In this sense, the distinctive elements of our theory
are the Vineyard-like approximation in equation (3) and the
interpolating approximation in equation (4).

From the SCGLE scheme in equations (1)–(5) one can
derive the equations for its long-time asymptotic solutions.
Thus, the unknown dynamic properties F(k, t), FS(k, t),
C(k, t), CS(k, t), and �ζ ∗(t), which in an ergodic state decay
to zero, in a non-ergodic state decay to finite asymptotic
values, referred to as the non-ergodic parameters, which we
denote by f (k)S(k), fS(k), c(k), cS(k), and �ζ ∗(∞). One can
then re-write equations (1)–(5) in terms of these asymptotic
values plus a regular contribution that does decay to zero.
Taking the long-time limit of the resulting equations leads to
a system of five equations for these five unknown non-ergodic
parameters [28, 29]. This system of equations can easily be
reduced to a single equation for the scalar parameter �ζ ∗(∞),
which reads

1

γ
= 1

6π2n

∫ ∞

0
dk k4 [S(k) − 1]2 λ2(k)

[
λ(k)S(k) + k2γ

] [
λ(k) + k2γ

] , (6)

with γ defined as γ ≡ D0/�ζ ∗(∞). The parameter γ thus
defined is just the asymptotic long-time value of the mean-
squared displacement of a particle localized by the arrested
cage formed by its neighbors [28]. The very form of this
criterion exhibits its simplicity: given the effective inter-
particle forces, statistical thermodynamic methods allow us to
determine S(k), and the absence or existence of finite positive
real solutions of this equation will indicate if the system
remains in the ergodic phase or not (notice that γ = ∞ is
always a solution, representing ergodic states). The meaning
of

√
γ as the localization length of a tracer particle in the

glass follows from the fact that the effective force on such a
tracer particle includes a term given by [36] ζ0

∫ ∞
0 �ζ ∗(t −

t ′)v(t ′) dt ′; in an arrested state, the non-ergodic part of �ζ ∗(t)
generates a harmonic force whose elastic constant, given by
ζ0�ζ ∗(∞), is related to γ by the definition above, through the
equipartition theorem.

The other four equations for the non-ergodic parameters
can then be used to express those quantities in terms of γ . The
equations for the non-ergodic parameters f (k) and fS(k) then
read

f (k) = λ(k)S(k)

λ(k)S(k) + k2γ
(7)

and

fS(k) = λ(k)

λ(k) + k2γ
. (8)

These equations clearly show that γ and the non-ergodic
parameters f (k) and fS(k) only depend on the static structure
factor S(k) (and the interpolating function λ(k), which is
determined by S(k)), and not on transport properties, such as
D0.

3. Hard-sphere plus attractive Yukawa model

Let us now discuss the application of the SCGLE theory above,
to the description of dynamic arrest in colloidal systems with
hard-sphere plus short-ranged attractive interactions. Strictly
speaking, the mono-component version of the SCGLE theory
should provide an appropriate description of the dynamic arrest
phenomena in these systems only when no second colloidal or
macromolecular component is involved. Thus, we shall have
in mind mono-disperse colloidal dispersions with attractive
interactions that originate, for example, from some form of
solvophobic effects. Since depletion forces are induced by
a second colloidal species, whose dynamics is not explicitly
included in the present model, their description should in
principle lie outside the present discussion. The application
of the SCGLE theory requires the static structure factor S(k)

to be provided as an external input. This structural property
may either be determined experimentally, by computer
simulations, or by approximate statistical thermodynamic
theories. The latter approach starts with the definition of the
inter-particle pair potential u(r) leading, with the assistance of
specific liquid theory approximations [40], to an approximate
evaluation of S(k).

In this section we present the results of the application of
the SCGLE theory to the hard-sphere plus attractive Yukawa
(HSAY, or simply ‘attractive Yukawa’) system, defined by the
pair potential

βu(r) =
⎧
⎨

⎩

∞, r < σ ;

−K
exp[−z(r/σ − 1)]

(r/σ)
, r > σ .

(9)

Since at this stage we are interested mostly on the qualitative
predictions of our theory, and in highlighting the main
differences and similarities with the predictions of MCT, here
we shall adopt the mean spherical approximation (MSA) for
the calculation of the static structure factor of this model,
taking advantage of its semi-analytic solution [41]. The state
space of this system is spanned by the hard-sphere volume
fraction φ ≡ πnσ 3/6 and by the dimensionless parameters
z and K , representing the inverse decay length (in units of
the hard-sphere diameter σ ) and the depth (in units of kBT )
of the attractive Yukawa well. For fixed z, the equilibrium

4



J. Phys.: Condens. Matter 20 (2008) 205104 P E Ramı́rez-González et al

Figure 1. Theoretical glass transition line in the plane (T ∗, φ) for the
HSAY system with fixed z = 20 according to the SCGLE theory,
calculated with equation (6), and represented by the thick (solid and
dashed) curve. The lighter (solid and dashed) line corresponds to the
freezing line, according to the Hansen–Verlet criterion, and the
dotted curve corresponds to the spinodal line. For reference, we also
include the glass transition line predicted by MCT (symbols taken
from [11]). The inset re-plots the SCGLE glass transition, the
freezing, and the spinodal lines in the (φ, K ) plane. The symbol ‘×’
indicates the high-concentration end point
(φe, T ∗

e ) = (0.574, 0.0794) of the glass transition line.

phase diagram of this system in the state space (φ, T ∗), with
T ∗ ≡ K −1 being a reduced temperature contains the gas,
liquid, and solid phases. The gas–liquid transition involves
a coexistence region, with an associated spinodal line φ =
φs(T ∗). The liquid–solid transition also involves a coexistence
region limited by the freezing and the melting lines φ =
φf(T ∗) and φ = φm(T ∗). The spinodal and the freezing
lines are readily sketched from the static structure factor by
the respective conditions, namely, S−1(k = 0) = 0 and
S(k = kmax) = 2.85 (Hansen–Verlet criterion [42], with kmax

being the position of the main peak of S(k)). In figure 1 we
present the spinodal and the freezing lines thus determined for
the HSAY system with z = 20 using the static structure factor
provided by the MSA.

These elements of the equilibrium phase diagram serve
as a reference in plotting the SCGLE results for the ergodic–
non-ergodic transition line calculated with the procedure of
the previous section, also employing the MSA static structure
factor as static input. In order to compare these results with
those of MCT, we have also included the MCT transition line
calculated in [11] with the same static input. Let us first
notice that, as the temperature is decreased starting from the
hard-sphere limit, our results for the glass transition line φ =
φg(T ∗) move to slightly higher volume fractions until φg(T ∗)
reaches a maximum value φe at the high-concentration end
point (φe, T ∗

e ). Upon decreasing the temperature below T ∗
e ,

the transition line moves very rapidly to lower volume fractions
until meeting the spinodal line on its high-density side. Let us
notice that the freezing line follows a similar trajectory, i.e. it
first moves to the right, up to its own end point, and then moves
to the left until meeting the spinodal line. In fact, the freezing
and the glass transition lines follow rather parallel trajectories,

since they keep the separation [φg(T ∗) − φf(T ∗)] roughly
temperature-independent in the region outside the spinodal.
The dashed lines inside the spinodal are the extrapolation of
the glass and freezing transitions to the inside of the spinodal,
using the analytic continuation of the MSA static structure
factors; we mention that the small-k divergence of S(k) at
the spinodal does not strongly affect the evaluation of the
integral in equation (6), and that the analytic continuation of
S(k) for wavevectors near its main peak (which determine the
glass and freezing transition lines) evolves smoothly from the
outside to the inside of the spinodal. Although we still have to
discuss in more detail the physical meaning of the results inside
the spinodal, we report that the SCGLE glass and freezing
transition lines only intersect inside the spinodal. We found
this to be a general pattern for the other values of the parameter
z considered here (up to z = 100).

In contrast, the MCT glass transition line, which for z =
20 meets the spinodal line near its critical point, may not cross
the spinodal curve for larger values of z. In this regard, recent
simulation work [21] reports no sign of the glass transition line
to preempt the gas–liquid spinodal curve, in agreement with
the results of the SCGLE theory. Let us also notice that, in
contrast with the predictions of the SCGLE theory, the MCT
glass transition line crosses the (Hansen–Verlet) freezing line at
temperatures well above the spinodal curve. We must mention,
however, that in recent calculations of the freezing and (MCT)
glass transition lines, computed with more accurate static
structure factors and for z = 30, no crossing between these two
lines is reported, although a decrease of [φg(T ∗)−φf(T ∗)] with
temperature down to T ∗ ≈ 1 is observed; see figure 1 of [43].

The inset of figure 1 re-plots the SCGLE glass transition
line at its high-density end, now in the plane (K , φ), to
illustrate the SCGLE prediction of the reentrant behavior
of the system upon lowering its temperature (raising K ) at
fixed volume fraction. This reentrance was first qualitatively
predicted by MCT [11–13] and some of its features have
been observed in specific experimental systems [14–20].
The detailed quantitative comparison between experimental
measurements and theoretical predictions is still a matter of
investigation.

Let us now illustrate the dependence of the location of the
glass transition line on the parameter z representing the inverse
range of the attractive forces. This is done in figure 2(a), where
we observe that the trends regarding the location of the end
point are rather similar to those obtained by Bergenholtz and
Fuchs from mode coupling theory [11], i.e. the end point moves
to higher volume fractions and lower reduced temperatures
with increasing z. As already indicated, the transition line
of the SCGLE theory intersects the spinodal on the high-
concentration side of the latter. In the inset of this figure we
use dashed lines to denote the analytic continuation of the
transition line inside the spinodal. Notice also that at large
temperatures (say, T ∗ � 1), the dependence on z of the glass
transition line vanishes, at least for z in the range considered
here.

From the theoretical results illustrated in figure 2(a) we
may extract the z-dependence of φe, the volume fraction of
the high-concentration end point of the glass transition line.
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Figure 2. (a) Theoretical glass transition line in the plane (φ, T ∗) for the HSAY system for z = 12.5, 20, and 30. (b) Volume fraction φe of
the high-concentration end point of the glass transition line (in units of the hard-sphere glass transition volume fraction φ(HS)

g ), as a function of
z; the solid circle corresponds to the conditions of the experimental system in [18]. (c) Width �T ∗ of the reentrance ergodic region (defined in
the text) as a function of z.

This property, expressed in units of the hard-spheres glass
transition volume fraction φ(HS)

g , is plotted in figure 2(b), which
shows that φe increases monotonically with z. One may
assume that scaled properties such as the ratio φe/φ

(HS)
g depend

less strongly on the numerical inaccuracies of the specific
theoretical models or approximations (such as the actual value
of the hard-sphere glass transition volume fraction) or on
the assumed connection between the experimental control
parameters and the theoretical state parameters (K , z, and φ).
Thus, this information may be relevant in attempting a direct
connection between the results of the SCGLE theory with the
few experiments in which not only the reentrance phenomenon
has been confirmed but also the glass transition line has been
sketched and the position of the end point has been estimated.

We can observe in figure 2 that, as z increases, not only the
end point moves to the right but also the shape of the ergodic
protrusion ending at (φe, T ∗

e ), i.e. of the reentrance region,
becomes more pronounced and acute. One might then question
if, in the limit z → ∞, this protrusion might become thin
enough to mimic the glass–glass transition line predicted by
MCT for the hard-sphere plus square well model in the regime
of deep and thin wells [13]. The answer is that, although
the observed tendency is the thinning of this protrusion with
increasing z, such limiting behavior is not reached, at least for
the values of z considered here (z � 100). To illustrate this,
in figure 2(c) we show how the width �T ∗ of this protrusion
changes with increasing z. We define �T ∗ as the temperature
difference between the points at which the glass transition line
is intersected by the isochore φ = [φe − φ(HS)

g ]/2 (which lies
midway between the isochores φ = φ(HS)

g and φ = φe that
limit the reentrance region).

4. Non-ergodic parameters

The non-ergodic parameter f (k) can be easily calculated using
equation (7). Illustrative examples are given in figure 3,
where we plot two sequences exhibiting the evolution of

the k-dependence of f (k) as we lower the temperature (or
increase the coupling parameter K ). In figure 3(a) we decrease
the temperature along the glass transition line for z = 30
from hard-sphere-like conditions (K = 0.1), through the
repulsive glass regime, passing the end point (φe, T ∗

e ) and the
attractive glass region down to near the spinodal line. We
observe a monotonic increase of f (k) at most wavevectors
as temperature is lowered, a trend similar to that observed by
Bergenholtz and Fuchs [11] in the results of MCT. We notice,
however, that the changes in the height of f (k) in the vicinity
of the position kmax of the main peak of S(k) are much smaller
than at other wavevectors. Also notice that the position of the
maximum of f (k) shifts to slightly larger values of k as we
pass the end point (φe, T ∗

e ), from repulsive to attractive glasses.
In the inset of figure 3(a) we plot the corresponding self -non-
ergodic parameter fs(k). We notice that this property exhibits
a less dramatic evolution as the temperature is lowered. In fact,
the self-non-ergodic parameters corresponding to the largest
values of K (K = 20 and 25) are virtually indistinguishable
on the scale of the figure.

The sequence in figure 3(b) corresponds to an isochoric
process of the HSAY system with z = 20. The fixed volume
fraction of this isochore, φ = 0.558, is intermediate between
φ(HS)

g = 0.537 and φe = 0.574, and hence it crosses the
reentrance region. Here we observe a non-monotonic evolution
of f (k) as temperature is lowered (K is increased). Thus, in
a first stage, starting from the hard-sphere regime towards the
repulsive glass transition, f (k) decreases at most wavevectors
as temperature is lowered, whereas for temperatures below
the attractive glass transition, f (k) increases as we further
lower the temperature. The results in figure 3 clearly exhibit
a general feature of the predictions of the SCGLE theory for
the collective non-ergodic parameter f (k), namely the fact that
its small-k limit is always 1. This limit is built in the theory
and is introduced by the approximations involved. We notice
that MCT predicts, instead, that limk→0 f (k) < 1. Besides
this rather notorious discrepancy, the SCGLE theory and MCT
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Figure 3. Non-ergodic parameter f (k) as a function of wavevector of the HSAY model with fixed z, calculated from equation (7) using MSA
static structure factors. In (a) we have fixed z = 30 and varied φ and K to follow the glass transition line. The inset shows the corresponding
self-non-ergodic parameter. In (b) we have fixed z = 20 and φ = 0.558, and varied K . The inset contains the variation of the maximum fmax

of f (k) as a function of T ∗ as we decrease T ∗ from its value at the transition line (circles) along the isochores φ = 0.1, 0.3, and 0.5, for
z = 20.

seem to agree on the main qualitative features of f (k) that we
just described.

The changes in f (k) illustrated in figure 3 occur in a
limited window of volume fractions and reduced temperatures.
We have scanned the state space to see the evolution of the non-
ergodic parameter, and in the inset of figure 3(b) we illustrate
the results of this scanning, in terms of the maximum value
fmax of the non-ergodic parameter as a function of T ∗ along
the isochores φ = 0.1, 0.3, and 0.5 (for z = 20). The
general pattern for all these isochores, and for the other values
of z considered here, is that fmax increases as temperature is
lowered below its glass transition temperature T ∗

g (φ), and that
fmax tends to saturate at the value fmax ≈ 1 at low enough
temperatures. Let us also notice from the results in this inset,
that the value of fmax at the transition (represented by the solid
circles) increases with increasing volume fraction in a much
more pronounced manner than illustrated in figure 3(a). One
reason is that the volume fraction range covered in the inset
is definitely larger than the volume fraction range involved in
figure 3(a).

5. Short-range structure and cluster formation

The dynamic arrest scenario emerging from the application of
either MCT or the SCGLE theory is the result of two factors,
namely, the general approximations and exact results involved
in the construction of these dynamic theories, and the detailed
static structural information of the specific system studied,
employed as an input in a particular concrete application.
This structural information, encrypted somehow in the static
structure factor S(k), triggers the onset of slow dynamic
behavior and the abrupt or discontinuous dependence of the
dynamic properties and leads to the reentrant dynamic arrest
scenario just described. Nevertheless, S(k) is found to vary
quite smoothly and continuously everywhere. Thus, the
discontinuity of the dynamic properties implies the existence

Figure 4. Radial distribution function (main figure) and static
structure factor (inset) of the HSAY model with z = 20, calculated
with the mean spherical approximation at fixed volume fraction
φ = 0.3 at various reduced temperatures.

of dynamic order parameters, such as the long-time self-
diffusion coefficient, which depend on S(k) in a continuous
manner, but which may reach a threshold value with a relevant
dynamic significance, such as DL = 0. In the process, no
dramatic change is observed in S(k), whose main features vary
monotonically as the transition line is crossed. For this very
reason, it is important to scrutinize S(k) and g(r) in an attempt
to identify which features of these structural properties might
be responsible for driving the system to the dynamic arrest
scenario described above.

Thus, we start in figure 4 by plotting the evolution of g(r)

and S(k) as we lower the temperature at fixed φ = 0.3 for the
HSAY system with z = 20. The first important observation
refers to the effects of the long-ranged correlations associated
to the critical point and, in general, to the spinodal line. These
effects are clearly noticed in the large values of S(k = 0) near
the spinodal (see the inset of figure 4). They also influence
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Figure 5. Local compactness function G(r) (main figures), mean number of bonded particles Nb (thick black lines in the insets), and mean
coordination number Nc (thinner (red) lines in the insets) for the HSAY model with z = 20. In (a) we have fixed the volume fraction at
φ = 0.3 and varied the temperature. In (b) we fixed the temperature at the values T ∗ = 1 (‘high’ temperature, hard-sphere-like; solid lines;
the upper curve corresponds to the largest volume fraction) and T ∗ = 0.05 (low temperature; dashed curves; the upper curve corresponds to
the smallest volume fraction).

the long-ranged behavior of g(r). This influence, however, is
virtually absent in the short-ranged structure of this property, as
illustrated in the main figure. In fact, it is quite remarkable that,
in spite of their singular nature, these long-ranged correlations
at the spinodal line do not seem to have a very relevant effect
on the dynamic properties near the dynamic arrest transition.
In fact, these dynamic properties can also be evaluated inside
the spinodal curve employing the analytic continuation of the
MSA structure factor illustrated in the figure, and the result is
a continuous and monotonous behavior as the spinodal line is
traversed. This was already illustrated in figure 1 with the glass
transition line, and figure 4 illustrates the same feature in terms
of the radial distribution function itself.

In the same figure, however, we can also observe a very
apparent monotonic tendency of the particles, in the close
neighborhood of a central particle, to arrange themselves
in increasingly more compact structures as temperature is
lowered. This is evidenced, for example, by the increase in
the contact value g(σ+). We find that this monotonic trend
in the short-ranged structure of g(r) is not affected by the
presence of the glass transition or the spinodal curve; instead,
this trend is perhaps the origin of the existence of both of these
boundaries. Thus, it is important to describe the evolution of
the degree of compactness of the local structure as we lower
the temperature and/or increase the volume fraction, since
this may be an important structural feature associated with
the dynamic arrest of the system. Furthermore, the concept
of compactness is perhaps a central property of the cluster
structures expected to appear when the short-ranged attractions
dominate, particularly at low volume fractions. Thus, let us
introduce, following [44], the mean number Nb of particles
bonded to a central particle and the mean coordination number
Nc, which we define as

Nb =
∫ σ+z−1

σ

ng(r) d3r (10)

and

Nc =
∫ σ+r∗

σ

ng(r) d3r, (11)

with r∗ being the location of the first minimum of g(r) (in
practice, for z = 20, we took r∗ ≈ 1.3). More generally, we
may extend the definitions above to an arbitrary upper limit
r , and normalize the resulting particle number by the mean
number of particles in a volume of the same size but in the bulk.
Thus, let us define the local compactness of the arrangement
of neighboring particles around a given central particle as the
function

G(r) ≡
∫ r
σ

g(r) d3r
∫ r
σ

d3r
. (12)

In figure 5 we present the evolution of these properties
as the state parameters (φ, T ∗) are varied. In the insets of
this figure we also plot the corresponding evolution of the
numbers Nb and Nc. The very first feature to notice is that the
compactness function, G(r), varies much more dramatically
with temperature at fixed volume fraction (particularly when
T ∗ falls below 0.2) than with volume fraction at fixed
temperature. This can be observed in figure 5(a) as the
large increase of G(r) as we lower T ∗; notice, for example,
that G(σ+) increases from around 3 to near 30 when T ∗ is
decreased from 1 to 0.04. Instead, G(σ+) increases from
around 2 to 8 when φ varies from 0.2 to 0.6 at T ∗ =
1 (see figure 5(b)), and that the curves for G(r) at the
lower temperature T ∗ = 0.05 do not differ much for the
various volume fractions illustrated in this figure. Another
way in which to see this is to compare the evolution of the
numbers Nb and Nc in the insets: these numbers increase
with volume fraction simply because they are proportional to
φ, whereas when lowering the temperature at fixed φ their
increase indicates a clear process of compaction of the short-
ranged structure. This conclusion is also supported by the fact
that the fraction of particles in the coordination shell that are
also bonded, Nc/Nb, is clearly larger at lower temperatures.
Notice, however, that these low-temperature features emerge
rather dramatically as T ∗ decreases to values of the order 0.1,
which is also the order of magnitude of the critical temperature
(T ∗ = 0.076) and of the temperature of the high-concentration
end point of the glass transition line (T ∗ = 0.079).
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Another important feature to notice is the opposite trend
observed at high versus low temperatures in the evolution of
G(r) as the volume fraction is varied at fixed temperature.
Thus, as observed in the results for this function in figure 5(b),
the compactness function increases with the volume fraction
along the high-temperature isotherm, whereas the opposite
occurs along the low-temperature isotherm. This means that at
high temperatures the local structure becomes more compact
as the volume fraction increases. This is a natural consequence
of the increasing crowding of particles in a fixed volume.
Such a ‘natural’ trend, however, is reversed at low enough
temperatures. At low temperatures the strong attractions imply
a strong tendency to bonding. The solution to this energy-
driven requirement depends, of course, on the availability of
particles to bond with, and this depends on volume fraction.
Thus, at low volume fractions the only solution is the formation
of disconnected clusters, whose compactness is only limited
by steric hard-core restrictions. At larger volume fractions,
however, these clusters can percolate, and a percolating cluster
must balance the energetically driven tendency to bonding,
which favors compactness, with the percolation condition,
which demands less compact structures. This might explain
the opposite trends at high and low temperatures. Of course,
a more detailed analysis of these qualitative and quantitative
trends of the static structural properties is in order. This
first account, provided by the analytic solution of the mean
spherical approximation, only allows us to point out that the
input structural properties themselves already carry important
information, which the dynamic theory expresses in terms of
the dynamic arrest scenario that we have described above.

6. Connection with experimental measurements

One of the main difficulties in comparing the results of the
present theory of dynamic arrest with specific experimental
measurements is the availability of an accurate connection
between experimental control parameters and theoretical state
variables such as K , z, and φ. The accuracy of this
connection affects the quality of the comparison between the
experimental and the theoretical (equilibrium and dynamic)
phase diagrams. We have shown already that in systems where
this connection is simple and accurate, and for which the static
structure factor has been determined or can be calculated with
sufficient accuracy (dispersions of hard or charged spherical
particles), the SCGLE theory provides a pretty satisfactory
description of dynamic arrest properties such as the non-
ergodic parameters [27, 28]. Unfortunately, this is not the
situation for systems with short-ranged attractive interactions,
since in this case this connection does not seem to be similarly
straightforward. For example, in [15], some points of the
ergodic–non-ergodic phase diagram were characterized in the
space of real control parameters of a copolymer micellar
system with short-ranged attractive interactions induced by
hydrophobic effects. These points were then mapped onto
the state space of the hard-sphere plus square well (HSSW)
potential, and MCT was employed to interpret the dynamic
measurements. Of course, the topology and other features
of the resulting ergodic–non-ergodic phase diagram were

determined to a large extent by those of the model and theory
employed to establish this mapping. The question remains as
to whether the results would be the same if the same raw data
were analyzed with a mapping involving instead the attractive
Yukawa potential. The fact that the topology of the ergodic–
non-ergodic phase diagrams of the two model systems are
qualitatively different indicates that the answer is no. MCT
predicts that the high-concentration end point of the squared
well model is also the end point of a glass–glass transition
line, whereas no such glass–glass transition line is predicted
by MCT for the attractive Yukawa system [11]; in fact, as
indicated in figure 1, the SCGLE theory qualitatively coincides
with MCT, concerning this particular feature of the topology of
the glass transition line of the attractive Yukawa system.

Thus, since even the very topology of the phase diagram
might be under discussion, perhaps one should first focus
on properties for which the connection between experimental
control parameters and theoretical variables might be more
straightforward. This is why we have emphasized the behavior
of the ratio φe/φ

(HS)
g plotted in figure 2(b). The hope is that this

ratio, which involves only volume fractions, can be calibrated
more reliably than the dimensionless temperature parameter
T ∗. For example, for the experimental system studied in [15],
the authors report that the end point is located at φe = 0.544,
with the volume fraction calibrated in such a way that their
φ(HS)

g , rather than coinciding with the actual experimental
value (∼0.57), coincides with the mode coupling prediction
φ(HS)

g = 0.516. This leads to a ratio φe/φ
(HS)
g = 1.054, which,

according to our results in figure 2(b), may be obtained with
z ≈ 16. The inverse decay length z−1 can be interpreted as
the range of the attractive potential in units of the hard-core
diameter σ which, according to the estimate z ≈ 16, must be
≈0.06. This estimate is within the experimental range [15] if
one establishes a simple relationship between the state space
(φ, T ∗, z) of the attractive Yukawa model and the state space
of the squared well system5. Beyond this observation, we must
postpone the quantitative comparison of our results with the
experimental data of [15] until a more accurate correspondence
can be established between the experimental data and the
theoretical predictions.

Let us mention that another experimental system has been
studied which, in a first approximation, might be describable
by the present theory. We refer to the colloid–polymer
mixtures studied in [18], in which depletion forces arising
from the presence of the non-adsorbing polymer are the
source of the short-ranged attractive interactions between the
colloidal particles. Here the control parameters are the volume
fraction φ of the colloid and the concentration cp of the
non-adsorbing polymer. It is an experimental fact that this
system exhibits a reentrance scenario upon increasing the
polymer concentration. This fact has been interpreted as
the experimental realization of the reentrance phenomenon
predicted by MCT for the generic models of short-ranged

5 We may relate the parameter z of the attractive Yukawa potential with the
parameter ε ≡ �/σ of the squared well potential (� being the width of
the attractive well) by equating the second virial coefficients of these two
model potentials. This leads to an approximate relation ε−1 ≈ α(T ∗)z, with
α(∞) = 1. Reference [14] quotes a value ε = 0.03, which, for z = 16,
corresponds to this relationship taken at T ∗ ≈ 0.4.
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attractive interactions. At small polymer concentrations, the
depletion interactions are well described by the Asakura–
Oosawa (AO) effective interaction [45], which provides the
connection between the parameters describing this effective
interaction and the experimental control parameters. As a
result, one finds that the range of the attractive interactions is
set by twice the polymer’s radius of gyration Rg and that the
polymer concentration cp determines the depth of the attractive
well. These connections allowed Pham et al [18] to compare
the MCT predictions with the experimental data of the dynamic
arrest phase diagram. The conclusion was that, although there
is full coincidence in the qualitative reentrant behavior, no
quantitative agreement could be achieved, particularly with
respect to the location φe of the end point. We have performed
a similar exercise using the results of our SCGLE theory for the
HSAY model, with essentially the same conclusions. Perhaps
the most notorious feature of this comparison is the fact that the
SCGLE theory would underestimate the ratio φe/φ

(HS)
g , whose

experimental value is approximately 1.11. A good estimate of
the parameter z of the HSAY model is given by the ratio of the
polymer gyration radius to the radius of the colloidal particles,
z ≈ 2Rg/σ , whose experimental value is 12.5 [18]. Thus, the
point (z, φe/φ

(HS)
g ) = (12.5, 1.11) in figure 2(a) (black circle)

represents this experiment. The clear displacement of this
point from our theoretical predictions (solid curve) indicates
the inability of the SCGLE theory and the HSAY model to
quantitatively describe this experiment. We find, according
to figure 2(a), that the value φe/φ

(HS)
g = 1.11 could only be

achieved for values of z more than three times larger than the
experimental value z = 12.5. The question is then whether
this disagreement signals a failure of the SCGLE theory of
dynamic arrest (or of MCT, which leads to a similar situation),
or to the inadequacy of the model whose static structure
was employed by these theories or whether, instead, there is
nothing intrinsically wrong with these theories and models,
but simply the system with depletion interactions cannot be
treated as an effective one-component fluid, in terms of a
simple effective pair potential such as the Asakura–Oosawa
interaction. Although the results above cannot give an answer
to this fundamental question, they provide a strong motivation
to consider alternative models and more extended theories. The
obvious alternative is to consider the extension of MCT or of
the SCGLE theory to multi-component dispersions [22], and to
treat the colloid–polymer mixtures as what they actually are,
namely, a binary colloidal mixture. Preliminary work in this
direction, based on the SCGLE theory, seems to indicate that
this is indeed a more productive route to the understanding of
the experimental data of [18].

7. Sticky hard-sphere model

In this section we consider the application of the SCGLE
theory to the sticky hard-sphere (SHS) model. The purpose
of these calculations is twofold: to compare the results of the
present theory with those of MCT in the context of another
simple model system and to illustrate the sensitivity of the
predicted dynamic phase diagram to the specific choice of one

Figure 6. Phase diagram of the sticky hard-sphere (SHS) model in
the (φ, τ ) state space, calculated with the Percus–Yevick static
structure factor. The dotted lines are the spinodal curve (lower left)
and the Hansen–Verlet freezing line. The other curves correspond to
the glass transition line calculated according to the SCGLE theory,
equation (6), with kc = kmin (solid curve), with kc = ∞ (dashed
curve), and with kc = 1.5 × kmin (dot–dashed curve). The solid line
with black circles is the MCT glass transition line reproduced
from [11, 12].

important constituent element of the SCGLE theory, namely,
the interpolating function λ(k).

In the sticky hard-sphere model the pairwise forces
between particles are described by the hard-sphere potential
with diameter σ plus an infinitely deep and narrow well defined
as

βu(r) = lim
δ→0

⎧
⎪⎨

⎪⎩

∞, r < σ ;

ln
[
12τδ/(1 + δ)

]
, σ < r < (1 + δ)σ ;

0, (1 + δ)σ < r ,
(13)

where β−1 ≡ kBT is the thermal energy; the parameter τ

plays the role of a reduced temperature. The static structure
factor of this system is known in closed analytic form within
the Percus–Yevick approximation [46] for given τ and given
volume fraction φ = πnσ 3/6 (with n being the particle
number concentration). In spite of important limitations,
the analytic simplicity of its structural properties makes the
SHS system a simple model to practise the application of
the SCGLE theory. In figure 6 we present the prediction of
the SCGLE theory for the glass transition line in the state
space (φ, τ ). As a reference, we also plot the equilibrium
spinodal and the freezing lines (according to the Hansen–Verlet
(HV) criterion [42]), as well as the MCT glass transition line
reproduced from [11, 12]. In presenting these results, the aim
is not so much to draw conclusions about relevant physical
content, but to illustrate the level of disagreement between
the two theories of dynamic arrest in the context of a simple
model system for which fully analytic expressions are available
for its static structure factor [46]. Let us first notice that in
this case the SCGLE glass transition line never presents the
reentrance predicted by the MCT. Instead, it lies completely to
the right of the spinodal line, without intersecting it (in reality,
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at extremely low τ the glass transition line finally bends to
the left, enters inside the spinodal, but immediately gets inside
the region where no solution exists for the PY static structure
factor). This scenario contrasts completely with that found
by Bergenholtz and Fuchs [11] and by Fabbian et al [12],
who found that the MCT glass transition line is constituted
by two different branches that meet at a crossing point, with
the low-τ branch continuing beyond this crossing point and
ending at a high-concentration end point. As seen in the figure,
the low-τ branch does not intersect, but is located above, the
spinodal curve. Thus, the SCGLE theory does not predict
for this model any form of reentrance nor the presence of a
second, low-temperature branch and, hence, neither the glass–
glass transition predicted by MCT for this system.

It is interesting to mention, however, that we may distort
the results of the SCGLE theory by manipulating one of its
essential elements, namely, the interpolating function λ(k) ≡
[1 + (k/kc)

2]−1. Thus, using for kc values different from kmin,
the position of the first minimum beyond the main peak of
S(k), we may distort the results such as the location and shape
of the glass transition line. We find that moving kc to larger
k values overemphasizes the effects leading to dynamic arrest.
This can be best illustrated by taking the limit kc = ∞, leading
to λ(k) = 1 for all k. The corresponding glass transition line
is also plotted in figure 1. Notice that the low-τ part of this
distorted glass transition line is located above the spinodal, and,
in fact, it behaves rather similarly to the MCT low-τ branch.
At large τ s, however, it is located completely to the left of the
freezing line; in fact, already its hard-sphere limit, φ(HS)

g (τ =
∞) = 0.455, falls below the corresponding freezing volume
fraction. In the same figure we also have plotted another
distorted glass transition line, this time corresponding to kc =
1.5 × kmin, only to show that there is a small window of values
of kc around this particular value, where one can see that the
transition line does bend to the left, enters the spinodal, and
eventually reaches the region inside the spinodal where no
solutions for S(k) exist. This distorted transition line happens
to mimic more closely the high-τ branch of the MCT glass
transition line (in fact, an almost perfect fit of this branch of
the MCT glass transition may be achieved with kc = 1.2564 ×
kmin). In spite of the anomalies of the sticky hard-sphere model,
however, these observations serve to illustrate that, at least
in the case of the SCGLE theory, the specific choice of the
elements that constitute this theory (such as the specific form
of λ(k)) may determine rather crucially the qualitative features
of the resulting dynamic arrest scenario.

In addition, the results in figure 6 illustrate the fact that the
function λ(k) modulates the importance assigned to the large
wavevector modes. Thus, the longer ranged this function is
in the wavevector domain, the stronger the effects leading to
dynamic arrest. The best election of λ(k) must, of course,
be identified by the highest accuracy of its predictions when
compared with clean experimental or simulation data. In this
sense, we remind the reader that the definition kc = kmin

involved in the SCGLE theory was derived from a series of
careful and detailed comparisons with computer simulation
results [30, 31], and is considered to be the most reliable
choice for this element of the theory. The fact that the

SCGLE theory overemphasizes the effects leading to dynamic
arrest when taking wavevectors beyond kmin suggests that
the modes corresponding to the neighborhood of the first
maximum of S(k) are the most relevant ones in determining
the precise location of the glass transition and that some
mechanism should be introduced to suppress the larger-k
modes. Such a mechanism is provided in our case by this
interpolating function. Of course, one would like elements like
this interpolating function to be determined from a rigorous
fundamental principle, but this is not the case. Hence, one
has to rely on simple and sensible arguments and tests, such
as those leading to the definition of λ(k) given in the original
proposal of the SCGLE theory [30, 31], namely λ(k) ≡ [1 +
(k/kc)

2]−1, with kc = kmin. Most likely one would observe
a similar dependence of the results of MCT on the specific
definition of the vertex functions, although we are not aware
of any systematic discussion of this subject in the literature.

8. Summary

In this paper we have applied the self-consistent generalized
Langevin equation theory to the description of dynamic
arrest in colloidal dispersions with short-ranged attractive
interactions. For this, we adopted the hard-sphere plus
attractive Yukawa system of equation (9) as our test model,
whose static structure factor S(k) was calculated within the
mean spherical approximation. After a brief review of the
SCGLE theory, which included the general results for the
non-ergodic parameters in equations (6)–(8), the dynamic
arrest phase diagram of this model system was presented,
its dependence on the range z−1 of the attractive forces was
illustrated, and the differences and similarities between the
results obtained from the SCGLE theory and those obtained
from MCT were discussed. Both theories coincide in most
qualitative general features, such as the existence of attractive
glasses and the reentrance phenomena first described by
MCT. Besides obvious quantitative differences, there are also
important qualitative disagreements between the predictions of
both theories. Perhaps the most notable of them is that the
SCGLE theory predicts that the glass transition line always
intersects the spinodal curve on the high-concentration side of
the latter, whereas MCT predicts the possibility that for large
values of z the glass transition preempts the gas–liquid phase
separation.

The specific results of the SCGLE theory are in reality
also a consequence of the specific static structural properties
of the system under study, since these structural properties
are employed as input of the dynamic theory. Thus, here
we also turned to the discussion of the structure provided by
the mean spherical approximation for the HSAY model. In
the process, we also discussed the temperature and volume
fraction dependence of the compactness of the short-ranged
local structure of the system. Let us stress that the semi-
analytic solution of the MSA provided us with a unique
opportunity to discuss this issue in the context of the simplest
non-trivial model. It is natural to question, however, the
physical significance of these results for g(r) inside the
spinodal. Our assumption is that they describe the structure
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of a thermodynamically unstable homogeneous equilibrium
state (just like the van der Waals isotherms inside the spinodal
represent the pressure of a homogeneous fluid in those
thermodynamically unstable states). These unstable states
are of limited interest if we are only interested in describing
thermodynamically stable, phase-separated conditions. If,
however, the conditions for dynamic arrest occur in this
region of unstable equilibrium homogeneous states, one may
expect the freezing in time of these locally compact and
inhomogeneous (but globally homogeneous) states described
by the MSA inside the spinodal line.

In reference to the possible detailed comparison of our
findings with concrete experimental measurements, so far
not many experimental reports of the determination of the
glass transition line for this kind of system have appeared
in the literature. As discussed in the previous section,
the predictions of the SCGLE theory for a mono-disperse
suspension should apply most naturally to the system studied
in [14–16], since the origin of the short-ranged attractions is
not derived from the presence of a second colloidal component.
Unfortunately, the comparison between these measurements
and the predictions of the SCGLE theory (complemented
with the MSA static structure of the attractive Yukawa
model) is not straightforward in the absence of a reliable
connection between the experimental control parameters and
the theoretical variables K , z, and φ.

On the other hand, the most extensive and straightforward
determination of the transition line exhibiting reentrance has
been performed on the colloid–polymer mixture reported
in [18]. As discussed above, neither MCT nor the present
theory are capable of providing a really satisfactory fit of the
experimentally determined glass transition line. The origin
of this discrepancy is perhaps not to be found in an intrinsic
failure of these dynamic theories, but in the very fact that
the mono-component versions of these theories are meant
to apply only to genuine mono-disperse systems; systems
with depletion forces in principle do not belong to this
category. This amounts to questioning the limits of validity
of the (Asakura–Oosawa or any other) representation of these
systems as effective mono-component systems. Finding out
whether this possibility would lead to a better interpretation
of the available experimental data, however, requires us to
place this discussion in the framework of the extension of
these theories of dynamic arrest to multi-component systems.
This in principle is now possible, since the multi-component
extension of MCT has been available for many years [47],
and the corresponding extension of the SCGLE theory has
just been elaborated [48]. Preliminary work [49] indicates
that this extension to mixtures of the SCGLE theory indeed
seems to provide a remarkably simple physical picture and
an unexpectedly accurate fit of the experimental data of the
dynamic arrest phase diagram in the colloid polymer mixtures
reported by Pham et al [18]. An important step in that
direction was to first attempt to fit those experimental data
with the mono-component SCGLE theory, as originally done
with MCT [18], and as we attempted to do as part of the
present work. The negative result hints at the possible
inadequacy of the application of mono-component theories

of dynamic arrest to these intrinsically bi-disperse systems.
This leaves genuinely mono-disperse systems as the natural
area of application of the results presented here. A more
significant comparison with experimental measurements must
await, however, the report of more abundant measurements.
In the meanwhile, the application of the SCGLE theory to
mono-disperse model systems with short-ranged attractions
will allow us to address fundamental questions, such as the
relationship between dynamic arrest, gas–liquid coexistence,
and the gel and glass transitions.
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Chávez-Rojo M A, Chávez-Páez M, Vizcarra-Rendón A and
Medina-Noyola M 2007 Rev. Mex. Fis. 53 327 (http://rmf.
fciencias.unam.mx/pdf/rmf/53/5/53 5 327.pdf)
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Medina-Noyola M 2007 Phys. Rev. E 76 041504

12

http://dx.doi.org/10.1126/science.267.5206.1924
http://dx.doi.org/10.1038/35065704
http://dx.doi.org/10.1080/00018738300101551
http://dx.doi.org/10.1016/0370-1573(95)00078-X
http://dx.doi.org/10.1080/00018730500414570
http://dx.doi.org/10.1103/RevModPhys.76.785
http://dx.doi.org/10.1088/0034-4885/55/3/001
http://dx.doi.org/10.1103/PhysRevA.43.5429
http://dx.doi.org/10.1103/PhysRevE.59.5706
http://dx.doi.org/10.1103/PhysRevE.59.R1347
http://dx.doi.org/10.1103/PhysRevE.63.011401
http://dx.doi.org/10.1103/PhysRevLett.84.5431
http://dx.doi.org/10.1126/science.1082364
http://dx.doi.org/10.1103/PhysRevE.68.041402
http://dx.doi.org/10.1103/PhysRevLett.86.6042
http://dx.doi.org/10.1126/science.1068238
http://dx.doi.org/10.1103/PhysRevLett.89.125701
http://dx.doi.org/10.1088/0953-8984/14/33/201
http://dx.doi.org/10.1103/PhysRevLett.94.078301
http://dx.doi.org/10.1103/PhysRevLett.92.225703
http://dx.doi.org/10.1103/PhysRevLett.90.228301
http://dx.doi.org/10.1103/PhysRevLett.97.095702
http://dx.doi.org/10.1103/PhysRevE.62.R5915
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://rmf.fciencias.unam.mx/pdf/rmf/53/5/53_5_327.pdf
http://dx.doi.org/10.1103/PhysRevE.76.041504


J. Phys.: Condens. Matter 20 (2008) 205104 P E Ramı́rez-González et al
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[49] Juárez-Maldonado R and Medina-Noyola M 2008

in preparation

13

http://dx.doi.org/10.1103/PhysRevE.76.062502
http://dx.doi.org/10.1103/PhysRevE.64.066114
http://dx.doi.org/10.1103/PhysRevE.67.021108
http://dx.doi.org/10.1016/j.physa.2005.10.048
http://dx.doi.org/10.1103/PhysRevE.72.031107
http://dx.doi.org/10.1063/1.478609
http://dx.doi.org/10.1016/0378-4371(87)90176-2
http://dx.doi.org/10.1039/dc9878300021
http://dx.doi.org/10.1016/0378-4371(87)90281-0
http://dx.doi.org/10.1103/PhysRev.110.999
http://dx.doi.org/10.1016/0378-4371(83)90048-1
http://dx.doi.org/10.1007/BF01013184
http://dx.doi.org/10.1103/PhysRev.184.151
http://dx.doi.org/10.1103/PhysRevE.76.031401
http://dx.doi.org/10.1103/PhysRevE.63.031501
http://dx.doi.org/10.1103/PhysRevE.47.2606
http://dx.doi.org/10.1103/PhysRevLett.59.998
http://arxiv.org/abs/0711.2021v1

	1. Introduction
	2. Brief review of the SCGLE theory
	3. Hard-sphere plus attractive Yukawa model
	4. Non-ergodic parameters
	5. Short-range structure and cluster formation
	6. Connection with experimental measurements
	7. Sticky hard-sphere model
	8. Summary
	Acknowledgments
	References

